новости автоспорта и автомобилестроения
Новости по датам
Ноябрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Окт    
 1234
567891011
12131415161718
19202122232425
2627282930  

Ученые научили компьютер распознавать пешеходов [видео]

Могут ли компьютеры распознавать объекты также, как человеческий мозг? Этим озадачились исследователи из университета Сан-Диего и разработали «умный» алгоритм, способный распознавать людей, в частности, пешеходов. Технология работает намного быстрее и точнее, чем существующие ныне системы, используемые сегодня большинством автопроизводителей. Она может определить людей со скоростью 2-4 кадра в секунду, делая половину ошибок по сравнению с существующими системами, и может быть использована в «умных» автомобилях, робототехнике и в поисковых системах, проводящих поиск по изображению или видео. Алгоритм требует гораздо меньше вычислительной мощности, так как сосредоточен лишь на нескольких областях изображения.

«Мы стремимся создать системы компьютерного зрения, которые помогут компьютерам лучше понять мир вокруг них», — сказал Нуну Васконселос, профессор электротехники из UC San Diego Jacobs School of Engineering.
Обычные системы исследуют изображение в маленьких окнах, которые обрабатываются классификатором. Этот подход является сложной задачей, так как люди на изображении получаются различного размера (в зависимости от расстояния до них) и в различных частях кадра. Как правило, нужно проверить миллионы частей видеокадра со скоростью от 5 до 30 кадров в секунду.

В каскадном обнаружении детектор работает в несколько этапов. Сперва алгоритм идентифицирует и отбрасывает изображения не имеющие человека (к примеру, небо). Затем обрабатываются изображения, которые труднее идентифицировать, к примеру, содержащие дерево, которое компьютер может распознать по форме, цвету, контурам и т.д. На заключительном этапе алгоритм должен отличить людей/пешеходов от других похожих объектов. Хотя этот метод является относительно быстрым, он не достаточно надежен, когда достигает финальной стадии.

Чтобы решить эту проблему, Васконселос и его команда разработал новый алгоритм, который включает глубинное обучение и моделирование на заключительных этапах каскадного детектора. Глубинные модели лучше подходят для комплексного распознавания образов и могут сопоставить сотни и тысячи примеров изображений, которые имеют или не имеют человека. Но, в то время, как эта технология хорошо работает на конечных стадиях, она слишком сложна для использования ее на ранних стадиях. Поэтому в решении исследователей сперва используются простые классификаторы, а затем сложные — глубинное обучение и моделирование.
Алгоритм работает пока только для бинарных задач обнаружения, таких, как обнаружение пешеходов. Но исследователи стремятся расширить технологию каскадного обнаружения многих объектов одновременно.
В видео показана работа системы обнаружения пешеходов, предложенная командой Васконселоса:


Источник: http://avtomaniya.com/site/publication-full/12018

Увлекательный мир авто.